Партнеры

Счетчики






Морские огурцы пойдут на микроэлектроды

Команда американских химиков и биологов разработала новый полимер, который меняет степень жесткости в зависимости от присутствия жидкости. Новый материал копирует свойства морских огурцов - червеобразных иглокожих. Работа ученых появилась в сетевой версии журнала Science 7 марта.

Свойства нового материала в "жестком" состоянии напоминают компакт-диск, а в "мягком" - резину. Полимер размягчается в присутствии водного растворителя. После испарения жидкости разработанный учеными материал вновь становится жестким.

Обычно мягкое тело морских огурцов, с которых был "скопирован" необычный полимер, способно быстро приобретать жесткость для защиты от врагов. Кожный покров морских огурцов содержит сеть чрезвычайно тонких целлюлозных нитей. В случае опасности нервные клетки морских огурцов вырабатывают определенные вещества, которые скрепляют нити вместе. Мягкое тело огурцов покрывается прочной броней. После того как опасность исчезает, другие клетки выделяют белок, ослабляющий связи.

Ученые под руководством Кристофа Ведера (Christoph Weder) выделили целлюлозные нити из тел оболочников - организмов со схожим строением внешних оболочек. Ученые смешали нити со смесью резиновых полимеров. Нити образовали трехмерный каркас, который придавал жесткость полимерному материалу.

Целлюлозные нити оставались соединенными друг с другом благодаря связям между гидроксильными группами, расположенными на их поверхности. В отсутствие молекул, содержащих водород, гидроксильные группы образовывали связи друг с другом, поддерживая сеть в стабильном состоянии. При добавлении растворителя на водной основе, его молекулы, содержащие большое количество гидроксильных групп, соединялись с гидроксильными группами целлюлозных нитей. Соответственно, образованная ими сеть ослаблялась, и полимер становился менее жестким.

При испарении растворителя связи между нитями восстанавливались, и полимер вновь приобретал жесткость.

Ученые видят большие возможности применения нового полимера. Они считают, что его можно использовать для конструкции внутримозговых микроэлектродов. Они были разработаны для лечения некоторых заболеваний, например, болезни Паркинсона. Однако в пилотных экспериментах было показано, что через несколько месяцев микроэлектроды перестают помогать больным. Разработчики предположили, что слишком жесткий материал, из которого сделаны микроэлектроды, повреждает мягкие ткани мозга.

Дастин Тайлер (Dustin Tyler), занимающийся разработкой методов электрической стимуляции считает, что новый материал, способный изменять свою жесткость, поможет решить эту проблему. По его словам, эксперименты по использованию микроэлектродов из нового полимера готовы начаться в ближайшее время.

Физики выберут способ защиты термоядерного реактора от внутренних взрывов

Специальная рабочая группа представит 18 марта свои соображения по поводу защиты камер ИТЭРа от ELM - взрывов в плазме, одной из основных инженерных проблем термоядерного синтеза. Ожидается, что ученые предложат разместить в реакторе 27 магнитов, которые будут гасить ELM, сообщает новостная служба журнала Nature.

Цель проекта ИТЭР (ITER, International Thermonuclear Experimental Reactor - Международный термоядерный экспериментальный реактор, ср. также лат. iter - "путь"), бюджет которого составляет около 10 миллиардов евро, - выяснить, может ли человечество эффективно использовать энергию термоядерного синтеза - мощного, безопасного и практически неисчерпаемого источника энергии.

Строительство и будущая эксплуатация реактора натыкаются на ряд сложных технических проблем, одна из которых - явление ELM, возникающее на внешних границах плазмы. ELM расшифровывается как edge localized modes - мода, локализованная на краю (шнура), иногда употребляются термины ELM-нестабильность, ELM-неустойчивость, ELM-активность.

ELM можно сравнить со случайным взрывом, причем, как показали недавние расчеты, происходить такие взрывы в реакторе будут раз в секунду. Длительность взрыва будет составлять около микросекунды, но мощность - до 20 гигаватт. Выделяющаяся в результате постоянных взрывов энергия может рано или поздно повредить стенки реактора. Необходим метод борьбы с ELM, причем он должен быть сравнительно недорогим и реализуемым в сжатые сроки, чтобы не сорвать график строительства реактора.

В 2006 году Тодд Эванс (Todd Evans) из "Дженерал Атомикс", Ричард Мойер (Richard Moyer) из Калифорнийского университета в Сан-Диего и их коллеги показали, что ELM можно подавить, расположив вокруг камер магнитные спирали. Это приведет к частичной утечке энергии - не такой большой, чтобы это остановило реакцию синтеза, но достаточной, чтобы обезвредить ELM. Основные магниты, удерживающие плазму в токамаке в нужном состоянии, для этого не годятся.

Последнее время ученые и инженеры занимаются тем, что ищут место для дополнительных магнитов. Сначала предполагалось разместить их в 14 уже предусмотренных проектом отверстиях. Однако 14 магнитов мало, кроме того, в этих местах магниты могут мешать другим инструментам.

В январе 2008 года был предложен другой вариант: четыре кольца по девять магнитов каждое. Он был отвергнут из-за высокой стоимости (50 миллионов евро) и сильного срыва графика, который он бы вызвал (до года). Сейчас обсуждается новый вариант - три кольца по девять магнитов - предположительно более дешевый и простой. Вероятно, именно он будет рекомендован рабочей группой 18 марта.

Hosted by uCoz