Партнеры

Счетчики






Некоторые подходы к решению проблемы искусственного интеллекта

Идея создания мыслящих машин "человеческого типа", которые думают, двигаются, слышат, говорят и вообще ведут себя как живые люди уходит корнями в глубокое прошлое. Еще в античности люди стремились создать машину, подобную себе.

В 1736 году французский изобретатель Жак де Вокансон изготовил механического флейтиста в человеческий рост, который исполнял двенадцать мелодий, перебирая пальцами отверстия и дуя в мундштук как настоящий музыкант. В середине 1750-х годов Фридрих фон Кнаус, австрийский автор, служивший при дворе Франциска I, сконструировал серию машин, которые умели держать перо и могли писать довольно длинные тексты. Другой мастер, Пьер Жак-Дроз из Швейцарии, построил пару изумительных по сложности механических кукол размером с ребенка: мальчика, пишущего письма и девушку, играющую на клавесине. Успехи механики XIX века стимулировали еще более честолюбивые замыслы. Так, в 1830-х годах английский математик Чарльз Бэббидж задумал, правда, так и не завершив, сложный цифровой калькулятор, который он назвал Аналитической машиной. Как утверждал Бэббидж, его машина в принципе могла бы рассчитывать шахматные ходы. Позднее, в 1914 году, директор одного из испанских технических институтов Леонардо Торрес-и-Кеведо действительно изготовил электромеханическое устройство, способное разыгрывать простейшие шахматные эндшпили почти также хорошо как и человек.

Но все эти механические устройства имеют лишь отдаленное сходство с тем, что может быть названо искусственным интеллектом, хотя интересны с исторической точки зрения. Такой подход к решению проблемы в общем случае можно назвать механистическим.

Электронный подход

После второй мировой войны появились устройства, казалось бы, подходящие для достижения заветной цели - моделирования разумного поведения; это были электронные цифровые вычислительные машины.

К концу 50-х годов все эти увлечения выделились в новую более или менее самостоятельную ветвь информатики, получившую название Искусственный интеллект. Исследования в области искусственного интеллекта, первоначально сосредоточенные в нескольких университетских центрах США - Массачусетском технологическом институте, Технологическом институте Карнеги в Питтсбурге, Стэндфордском университете, - ныне ведутся во многих других университетах и корпорациях США и других стран. Исследователей искусственного интеллекта, работающих над созданием мыслящих машин, можно разделить на две группы. Одних интересует чистая наука и для них компьютер - лишь инструмент, обеспечивающий возможность экспериментальной проверки теорий процессов мышления. Интересы другой группы лежат в области техники: они стремятся расширить сферу применения компьютеров и облегчить пользование ими. Многие представители второй группы мало заботятся о выяснении механизма мышления - они полагают, что для их работы это едва ли более полезно, чем изучение полета птиц и самолетостроения.

На протяжении всей своей короткой истории исследователи в области искусственного интеллекта всегда находились на переднем крае информатики. Многие ныне обычные разработки, в том числе усовершенствованные системы программирования, текстовые редакторы и программы распознавания образов, в значительной мере рассматриваются на работах по искусственному интеллекту. Короче говоря, теории, новые идеи и разработки искусственного интеллекта неизменно привлекают внимание тех, кто стремится расширить области применения и возможности компьютеров, сделать их более "дружелюбными", то есть более похожими на разумных помощников и активных советчиков, чем те педантичные и туповатые электронные рабы, какими они всегда были. Несмотря на многообещающие перспективы, ни одну из разработанных до сих пор программ искусственного интеллекта нельзя назвать "разумной" в обычном понимании этого слова. Это объясняется тем, что все они узко специализированы; самые сложные экспертные системы по своим возможностям скорее напоминают дрессированных или механических кукол, нежели человека с его гибким умом и широким кругозором. Даже среди исследователей искусственного интеллекта теперь многие сомневаются, что большинство подобных изделий принесет существенную пользу. Немало критиков искусственного интеллекта считают, что такого рода ограничения вообще непреодолимы, и решение проблемы искусственного разума надо искать не в сфере непосредственно электроники, а где-то за ее пределами.

Кибернетический подход

Попытки построить машины, способные к разумному поведению, в значительной мере вдохновлены идеями профессора Массачусетского технологического института Норберта Винера, одной из выдающихся личностей в интеллектуальной истории Америки и всего мира. Помимо математики он обладал широкими познаниями в других областях, включая нейропсихологию, медицину, физику и электронику. Винер был убежден, что наиболее перспективны научные исследования в так называемых пограничных областях, которые нельзя всецело отнести к той или иной конкретной дисциплине. Они лежат где-то на стыке наук, поэтому к ним обычно не подходят столь строго. "Если затруднения в решении какой-либо проблемы психологии имеют математический характер, - пояснял он, - то десять несведущих в математике психологов продвинутся не дальше одного столь же несведущего". Таким образом, междисциплинарность - краеугольный камень современной науки.

Винеру и его сотруднику Джулиану Бигелоу принадлежит разработка принципа "обратной связи", который был успешно применен при разработке нового оружия с радиолокационным наведением. Принцип обратной связи заключается в использовании информации, поступающей из окружающего мира, для изменения поведения машины. В основу разработанных Винером и Бигелоу систем наведения были положены тонкие математические методы; при малейшем изменении отраженных от самолета радиолокационных сигналов они соответственно изменяли наводку орудий, то есть, заметив попытку отклонения самолета от курса, они тотчас рассчитывали его дальнейший путь и направляли орудия так, чтобы траектории снарядов и самолетов пересеклись. В дальнейшем Винер разработал на принципе обратной связи теории как машинного, так и человеческого разума. Он доказывал, что именно благодаря обратной связи все живое приспосабливается к окружающей среде и добивается своих целей. "Все машины, претендующие на разумность, - писал он, - должны обладать способностью преследовать определенные цели и приспосабливаться, то есть обучаться".

В 1948 году выходит книга Винера, в которой он заложил фундамент новой науки, названной им кибернетикой, что в переводе с греческого означает рулевой. Следует отметить, что принцип "обратной связи", введенный Винером, был в какой-то степени предугадан Сеченовым в описанном им в книге "Рефлексы головного мозга" (1863 год) феномене "центрального торможения", то есть почти за 100 лет до Винера, и рассматривался как механизм регуляции деятельности нервной системы, и который лег в основу многих моделей произвольного поведения в отечественной психологии.

Нейронный подход

На некотором этапе развития информатики многие ученые стали понимать, что создателям вычислительных машин есть чему поучиться у биологии. Среди них был нейрофизиолог и поэт-любитель Уоррен Маккалок, обладавший, как и Винер, философским складом ума и широким кругом интересов. В 1942 году Маккалок, участвуя в научной конференции в Нью-Йорке, услышал доклад одного из сотрудников Винера о механизмах обратной связи в биологии. Высказанные в докладе идеи перекликались с собственными идеями Маккалока относительно работы головного мозга. В течение следующего года Маккалок в соавторстве со своим 18-летним протеже, блестящим математиком Уолтером Питтсом, разработал теорию деятельности головного мозга. Эта теория и являлась той основой, на которой сформировалось широко распространенное мнение, что функции компьютера и мозга в значительной мере сходны.

Исходя отчасти из предшествующих исследований нейронов (основных активных клеток, составляющих нервную систему животных и человека в частности), проведенных Маккалоком, они с Питтсом выдвинули гипотезу, что нейроны можно упрощенно рассматривать как устройства, оперирующие двоичными числами. Двоичные числа, состоящие из цифр единица и нуль, - рабочий инструмент одной из систем математической логики. Английский математик XIX века Джордж Буль, предложивший эту остроумную и мощнейшую систему, показал, что логические утверждения можно закодировать в виде единиц и нулей, где единица соответствует истинному высказыванию, а нуль - ложному, после чего этим можно оперировать как обычными числами. В 30-е годы XX века пионеры информатики, в особенности американский ученый Клод Шеннон, поняли, что двоичные единица и нуль вполне соответствуют двум состояниям электрической цепи (включено-выключено), поэтому двоичная система идеально подходит для электронно-вычислительных устройств.

Маккалок и Питтс предложили конструкцию сети из электронных "нейронов" и показали, что подобная сеть может выполнять практически любые вообразимые числовые или логические операции. Далее они предположили, что такая сеть в состоянии также обучаться, распознавать образы, обобщать, то есть она обладает всеми чертами интеллекта. Теории Маккалока-Питтса в сочетании с книгами Винера вызвали огромный интерес к разумным машинам. В 40-60-е годы все больше кибернетиков из университетов и частных фирм запирались в лабораториях и мастерских, напряженно работая над теорией функционирования мозга и методично припаивая электронные компоненты моделей нейронов. Из этого нейро-модельного подхода к машинному разуму скоро сформировался так называемый "восходящий метод" - движение от простых аналогов нервной системы примитивных существ, обладающих малым числом нейронов, к сложнейшей нервной системе человека и даже выше. Конечная цель виделась в создании "адаптивной сети", "самоорганизующейся системы" или "обучающейся машины" - все эти названия разные исследователи использовали для обозначения устройств, способных следить за окружающей обстановкой и с помощью обратной связи изменять свое поведение в полном соответствии с господствовавшей в те времена бихевиористской школой психологии, то есть вести себя так же как живые организмы.

Однако отнюдь не во всех случаях возможна аналогия с живыми организмами. Но дело здесь не только во времени. Основной трудностью, с которой столкнулся "восходящий метод" на заре своего существования, была высокая стоимость электронных элементов. Слишком дорогой оказывалась даже модель нервной системы муравья, состоящая из 20 тысяч нейронов, не говоря уже о нервной системе человека, включающей около 100 миллиардов нейронов. Даже самые совершенные кибернетические модели содержали лишь несколько сотен нейронов. Столь ограниченные возможности обескуражили многих исследователей того периода.

В настоящее время нейронный подход является, по мнению ряда ученых, наиболее продуктивным, так как при этом создается структура, изоморфная человеческому мозгу, что соответственно повышает вероятность появления систем искусственного интеллекта уже в ближайшем будущем. Элементная база и принципы функционирования современных компьютеров практически исчерпали себя, и компьютерная индустрия стоит на пороге коренной ломки, которая может пойти по пути использования моделей нейронов, что может существенно упростить работу с компьютером и повысить его вычислительную мощность.

Распознавательный подход

После нескольких лет эйфории кибернетика столкнулась с целым рядом трудностей. Одним из тех, кого они ничуть не испугали, был Фрэнк Розенблат, труды которого, казалось, отвечали основным устремлениям кибернетиков. В середине 1958 года им была предложена модель электронного устройства, названного им персептроном (perceptron - распознаватель), которое должно было бы имитировать процессы человеческого мышления. Персептрон должен был передавать сигналы от "глаза", составленного из фотоэлементов, в блоки электромеханических ячеек памяти, которые оценивали относительную величину электрических сигналов. Эти ячейки соединялись между собой случайным образом в соответствии с господствующей тогда теорией, согласно которой мозг воспринимает новую информацию и реагирует на нее через систему случайных связей между нейронами.

Два года спустя была продемонстрирована первая действующая машина "Марк-1", которая могла научиться распознавать некоторые из букв, написанных на карточках, которые подносили к его "глазам", напоминающим кинокамеры. Персептрон Розенблата оказался наивысшим достижением "восходящего", или нейро-модельного метода создания искусственного интеллекта. Чтобы научить персептрон способности строить догадки на основе исходных предпосылок, в нем предусматривалась некая элементарная разновидность автономной работы или "самопрограммирования". При распознании той или иной буквы одни ее элементы или группы элементов оказываются гораздо более существенными, чем другие. Персептрон мог научаться выделять такие характерные особенности буквы полуавтоматически, своего рода методом проб и ошибок, напоминающим процесс обучения. Однако возможности персептрона были ограниченными: машина не могла надежно распознавать частично закрытые буквы, а также буквы иного размера или рисунка, нежели те, которые использовались на этапе ее обучения.

Ведущие представители так называемого "нисходящего метода" специализировались в отличие от представителей "восходящего метода" в составлении для цифровых компьютеров общего назначения программ решения задач, требующих от людей значительного интеллекта, например для игры в шахматы или поиска математических доказательств. К числу защитников "нисходящего метода" относились Марвин Минский и Сеймур Пейперт, профессоры Массачусетского технологического института, того самого института, профессором которого был и Винер. Минский начал свою карьеру исследователя искусственного интеллекта сторонником "восходящего метода" и в 1951 году построил обучающуюся сеть на вакуумных электронных лампах. Однако вскоре, к моменту создания персептрона он перешел в противоположный лагерь. В соавторстве с южно-африканским математиком Пейпертом, с которым его познакомил Маккалок, он написал книгу "Персептроны", где математически доказывалось, что персептроны, подобные розенблатовским, принципиально не в состоянии выполнять многие из тех функций, которые предсказывал им Розенблат.

Минский утверждал, что персептроны никогда не обретут даже умения распознавать предмет, частично заслоненный другим. Глядя на торчащий из-за кресла кошачий хвост, подобная машина никогда не сможет понять, что она видит. Нельзя сказать, что появившаяся в 1969 году эта критическая работа покончила с кибернетикой. Она лишь переместила интерес аспирантов и субсидии правительственных организаций США, традиционно финансирующих исследования по искусственному интеллекту, на другое направление исследований - "нисходящий метод".

Что дальше?

Интерес к кибернетике в последнее время возродился, так как сторонники "нисходящего метода" столкнулись со столь же неодолимыми трудностями. Сам Минский публично выразил сожаление, что его выступление нанесло урон концепции персептронов, заявив, что, согласно его теперешним представлениям, для реального прорыва вперед в создании разумных машин потребуется устройство, во многом похожее на персептрон. Но в основном искусственный интеллект стал синонимом нисходящего подхода, который за последнее время выражался в составлении все более сложных программ для компьютеров, моделирующих сложную деятельность человеческого мозга.

Какой подход будет применен следующим, покажет будущее. Можно лишь убежденно констатировать, что искусственный интеллект - пока неподдающаяся область науки об обработке информации; та область, в которой изначальный оптимизм уверенно сменяется пессимизмом, за которым через время снова возрождается период непреодолимого оптимизма. В эти периоды возникают новые подходы, чей фундамент сложен исключительно из тех свежих представлений, что успели появиться к текущему моменту во всех смежных областях знаний. Поэтому так сложно сегодня прогнозировать дальнейшую эволюцию методик построения искусственного разума. В этой области неоднократно радостное "Эврика!" конфузилось последующим признанием "Нет, не то!". Но неизбежен тот час, когда горечь смущения не последует за радостью победы.

Знайкина копилка, 19 декабря 2004 года ленточные пилы

Hosted by uCoz