Партнеры

Счетчики






Теория фреймов

Каталов Александр

Понятие фрейм. Манипуляция фреймами. Распознавание фреймов.

Введение

Теория фреймов - это парадигма для представления знаний с целью использования этих знаний компьютером. Впервые была представлена Минским как попытка построить фреймовую сеть , или парадигму с целью достижения большего эффекта понимания . С одной стороны Минский пытался сконструировать базу данных , содержащую энциклопедические знания , но с другой стороны , он хотел создать наиболее описывающую базу , содержащую информацию в структурированной и упорядоченной форме . Эта структура позволила бы компьютеру вводить информацию в более гибкой форме , имея доступ к тому разделу , который требуется в данный момент . Минский разработал такую схему , в которой информация содержится в специальных ячейках , называемых фреймами , объединенными в сеть , называемую системой фреймов . Новый фрейм активизируется с наступлением новой ситуации.

Отличительной его чертой является то, что он одновременно содержит большой объем знаний и в то же время является достаточно гибким для того , чтобы быть использованным как отдельный элемент БД . Термин "фрейм" был наиболее популярен в середине семидесятых годов , когда существовало много его толкований , отличных от интерпретации Минского .

Чтобы лучше понять эту теорию, рассмотрим один из примеров Минского, основанный на связи между ожиданием, ощущением и чувством человека, когда он открывает дверь и входит в комнату. Предположим , что вы собираетесь открыть дверь и зайти в комнату незнакомого вам дома . Находясь в доме , перед тем как открыть дверь , у вас имеются определенные представления о том , что вы увидите , войдя в комнату . Например , если вы увидите к-л пейзаж или морской берег , поначалу вы с трудом узнаете их . Затем вы будете удивлены , и в конце концов дезориентированы , так как вы не сможете объяснить поступившую информацию и связать ее с теми представлениями , которые у вас имелись до того. Также у вас возникнут затруднения с тем , чтобы предсказать дальнейший ход событий.

С аналитической точки зрения это можно объяснить как активизацию фрейма комнаты в момент открывания двери и его ведущую роль в интерпретации поступающей информации. Если бы вы увидели за дверью кровать , то фрейм комнаты приобрел бы более узкую форму и превратился бы во фрей кровати . Другими словами , вы бы имели доступ к наиболее специфичному фрейму из всех доступных .Возможно ,б что вы используете информацию , содержащуюся в вашем фрейме комнаты для того чтобы распознать мебель , что называется процессом сверху-вниз , или в контексте теории фреймов фреймодвижущим распознаванием . Если бы вы увидели пожарный гидрант , то ваши ощущения были бы аналогичны первому случаю. Психологи подметили , что распознавание объектов легче проходит в обычном контексте, чем в нестандартной обстановке . Из этого примера мы видим , что фрейм - это модель знаний , которая активизируется в определенной ситуации и служит для ее объяснения и предсказания.

У Минского имелись достаточно расплывчатые идеи о самой структуре такой БД , которая могла бы выполнять подобные вещи . Он предложил систему , состоящую из связанных между собой фреймов , многие из которых состоят из одинаковых подкомпонентов , объединенных в сеть . Таким образом , в случае , когда к-л входит в дом , его ожидания контролируются операциями , входящими в сеть системы фреймов . В рассмотренном выше случае мы имеем дело с фреймовой системой для дома , и с подсистемами для двери и комнаты . Активизированные фреймы с дополнительной информацией в БД о том , что вы открываете дверь , будут служить переходом от активизированного фрейма двери к фрейму комнаты . При этом фреймы двери и комнаты будут иметь одинаковую подструктуру . Минский назвал это явление разделом терминалов и считал его важной частью теории фреймов .

Минский также ввел терминологию, которая могла бы использоваться при изучении этой теории ( фреймы , слоты , терминалы и т. д.) . Хотя примеры этой теории были разделены на языковые и перцептуальные, и Минский рассматривал их как имеющих общую природу , в языке имеется более широкая сфера ее применения . В основном большинство исследований было сделано в контексте общеупотребительной лексики и литературного языка .

Как наиболее доступную иллюстрацию распознаванию, интерпретации и предположению можно рассмотреть две последовательности предложений, взятых из Шранка и Абельсона. На глобальном уровне последовательность А явно отличается от В.
AJohn went to a restaurant
He asked the waitress for a hamburger
He paid the tip & left
BJohn went to a park
He asked the midget for a mouse
He picked up the box & left

Хотя все эти предложения имеют одинаковую синтаксическую структуру и тип семантической информации, понимание их кардинально различается. Последовательность А имеет доступ к некоторому виду структуры знаний высшего уровня, а В не имеет. Если бы А не имело такой доступ, то ее понимание сводилось бы к уровню В и характеризовалось бы как дезориентированное. Этот контраст является наглядным примером мгновенной работы высшего уровня структуры знаний.

Была предложена программа под названием SAM, которая отвечает на вопросы и выдает содержание таких рассказов. Например, SAM может ответить на следующие вопросы, ответы на которые не даны в тексте, с помощью доступа к записи предполагаемых событий, предшествующих обеду в ресторане.

Did John sit down in the restaurant?
Did John eat the hamburger?

Таким образом, SAM может распознать описанную ситуацию как обед в ресторане и затем предсказать оптимальное развитие событий. В нашем случае распознавание не представляло трудностей, но в большинстве случаев оно довольно непростое и является самой важной частью теории.

Рассмотрим другой пример:
CHe plunked down $5 at the window.
She tried to give him $ 2.50, but he wouldn't take it.
So when they got inside, she bought him a large bag of popcorn.

Он интересен тем , что у большинства людей он вызывает цикл повторяющихся неправильных или незаконченных распознаваний и реинтерпретаций .

В случаях с многозначными словами многозначность разрешается с помощью активизированного ранее фрейма . Для этих целей необходимо создать лексикон к каждому фрейму . Когда фрейм активизируется , соответствующему лексикону отдается предпочтение при поиске соответствующего значения слова . В контексте ТФ это распознавание процессов , контролируемых фреймами , которые , в свою очередь , контролируют распознавание входящей информации . Иногда это называется процессом сверху - вниз фреймодвижущего распознавания .

Применение этих процессов нашло свое отражение в программе FRAMP , которая может суммировать газетные сводки и классифицировать их в соответствие с классом событий , например терроризм или землетрясения . Эта программа хранит набор объектов , которые должны быть описаны в каждой разновидности текстов , и этот набор помогает процессу распознавания описываемых событий .

Манипуляция фреймами

Детали спецификации Ф и их репрезентации могут быть опущены , так же как и алгоритмы их манипуляции , потому что они не играют большой роли в ТФ .

Такие вопросы, как размер Ф или доступ к нему , связаны с организацией памяти и не требуют специального рассмотрения .

Распознавание

В литературе имеется много рассуждений по поводу процессов , касающихся распознавания фреймов и доступа к структуре знаний высшего уровня . Несмотря на то , что люди могут распознать фрейм без особых усилий , для компьютера в большинстве случаев это довольно сложная задача . Поэтому вопросы распознавания фреймов остаются открытыми и трудными для решения с помощью ИИ .

Размер фрейма

Размер фрейма гораздо более тесно связан с организацией памяти, чем это кажется на первый взгляд. Это происходит потому, что в понимании человека размер фрейма определяется не столько семантическим контекстом, но и многими другими факторами. Рассмотрим фрейм визита к доктору, который складывается из подфреймов, одним из которых является комната ожидания. Таким образом мы можем сказать, что размер фрейма не зависит от семантического содержания представленного фрейма / такого, как, например, визит к врачу / , но зависит от того, какие компоненты описывающей информации во фрейме / таком, как комната ожидания / используются в памяти. Это означает, что когда определенный набор знаний используется памятью более чем в одной ситуации, система памяти определяет это, затем модифицирует эту информацию во фрейм, и реструктурирует исходный фрейм так, чтобы новый фрей использовался как его подкомпонент.

Вышеперечисленные операции также остаются открытыми вопросами в ТФ.

Инициализационные категории

Рош предложил три уровня категорий представления знаний: базовую, субординатную и суперординационную. Например в сфере меблировки концепция кресла является примером категории основного уровня, а концепция мебели - это пример суперординационной категории. Язык представления знаний подвержен влиянию этой таксономии и включает их как различные типы данных. В сфере человеческого общения категории основного уровня являются первейшими категориями, которые узнают человек, другие же категории вытекают из них. То есть суперординационная категория - это обобщение базовой, а субординатная - это подраздел базовой категории. Пример:
суперординатнаяидеисобытия
базоваясобытиядействия
субординатнаядействияпрогулка

Каждый фрейм имеет свой определенный так называемый слот. Так, для фрейма действие слот может быть заполнен только к-л исполнителем этого действия, а соседние фреймы могут наследовать этот слот.

Некоторые исследователи предположили , что случаи грамматики падежей совпадают со слотами в ТФ , и эта теория была названа теорией идентичности слота и падежа . Было предложено число таких падежей , от 8 до 20 , но точное число не определено . Но если агентив полностью совпадает со своим слотом , то остальные падежи вызвали споры . И до сих пор точно не установлено , сколько всего существует падежей .

Также вызвал трудность тот факт, что слоты не всегда могут быть переходными . Например , в соответствие с ТФ можно сказать , что фрейм одушевленный предмет может иметь слот живой , фрейм человек может иметь слот честный , а фрейм блоха не может иметь такой слот , и он к нему никогда не перейдет .

Другими словами, связи между слотами в ТФ не являются исследованными до конца . Слоты могут передаваться , могут быть многофункциональны , но в то же время не рассматриваются как функции . Гибридные системы

СФ иногда адаптируются для построения описаний или определений . Был создан смешанный язык , названный KRYPTON , состоящий из фреймовых компонентов и компонентов предикатных исчислений , помогающих делать к-л выводы с помощью терминов и предикатов . Когда активизируется фрейм , факты становятся доступными пользователю . Также существует язык Loops , который объединяет объекты , логическое программирование и процедуры .

Существуют также фреймоподобные языки , которые за исходную позицию принимают один тип данных в памяти , к-л концепцию , а не две / напр фрейм и слот / , и представление этой концепции в памяти должно быть цельным .

Объектно - ориентированные языки

Параллельно с языками фреймов существуют объектно - ориентированные программные языки, которые используются для составления программ, но имеют некоторые св-ва языков фреймов, такие, как использование слотов для детальной, доскональной классификации объектов. Отличие их от языков фреймов в том, что фреймовые языки направлены на более обобщенное представление информации об объекте.

Одной из трудностей представления знаний и языка фреймов является отсутствие формальной семантики. Это затрудняет сравнение свойств представления знаний различных языков фреймов, а также полное логическое объяснение языка фреймов.


Источник: http://www.russia.lt/vb/referat/index.html
Дополнительно
Статья: Фреймы для представления знаний
Hosted by uCoz